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Abstract
Digital breast tomosynthesis (DBT) has been widely implemented in place of 2D mammography, although it is less effective
in women with extremely dense breasts. Breast ultrasound detects additional early-stage, invasive breast cancers when
combined with mammography; however, its relevant limitations, including the shortage of trained operators, operator
dependence and small field of view, have limited its widespread implementation. Automated breast sonography (ABS) is a
promising technique but the time to interpret and false-positive rates need to be improved. Supplemental screening with
contrast-enhanced magnetic resonance imaging (MRI) in high-risk women reduces late-stage disease; abbreviated MRI
protocols may reduce cost and increase accessibility to women of average risk with dense breasts. Contrast-enhanced digital
mammography (CEDM) and molecular breast imaging improve cancer detection but require further validation for screening
and direct biopsy guidance should be implemented for any screening modality. This article reviews the status of screening
women with dense breasts.
Key Points
• The sensitivity of mammography is reduced in women with dense breasts. Supplemental screening with US detects early-
stage, invasive breast cancers.

• Tomosynthesis reduces recall rate and increases cancer detection rate but is less effective in women with extremely dense breasts.
• Screening MRI improves early diagnosis of breast cancer more than ultrasound and is currently recommended for women at
high risk. Risk assessment is needed, to include breast density, to ascertain who should start early annual MRI screening.
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Introduction

Mammography remains the primary screening method for
breast cancer as it is proven to reduce breast cancer mortal-
ity by about 20% on long-term follow-up in randomised
trials [1, 2]. In observational studies, breast cancer mortal-
ity reduction is 25–31% for women invited for screening,
versus 38–48% for women actually screened [3, 4].
Mammography only reduced mortality in trials where de-
tection of node-negative invasive cancers improved as a
result of screening [5].

Not all women benefit equally from mammography.
Women at high risk for breast cancer because of pathogenic
mutations have a high rate of ‘interval cancers’ detected be-
cause of lumps or other symptoms after a normal mammo-
gram and before the next recommended screen [6–8]. Interval
cancers typically have worse prognosis than screen-detected
cancers. Interval cancer rates increase with increasing breast
density [9] and are elevated in women with a personal history
of breast cancer [10].

In women where mammography performs less well,
there is interest in supplemental screening with MRI or
ultrasound or other methods. Randomised trials of supple-
mental screening to examine mortality reduction would be
prohibitively expensive and require long-term (> 10 years)
follow-up, by which time the technologies will have
changed so that results would be outdated. We should, in-
stead, examine impact on intermediate endpoints, such as
node-negative invasive cancer detection and interval cancer
rates, which are expected to translate to reduced mortality
from breast cancer [11, and references within]. In a success-
ful screening program, interval cancers should represent
fewer than 10% of all cancers. The purpose of this review
is to examine such intermediate endpoints for women with
dense breasts undergoing supplemental screening.

Breast density, risk and masking effect

Wolfe first related nodular dense patterns of breast tissue on
mammography to risk of developing breast cancer [12],
finding a 37-fold higher risk with the most nodular/dense
pattern compared to the least nodular pattern. An analysis
of the Dutch mammography screening program [13], which
uses the Wolfe classification, showed a 41% mortality re-
duction in women with non-dense breasts (relative risk of
death, RR, 0.59 [95% CI 0.44–0.79]) compared to a 13%
reduction in women with dense breasts (RR 0.87 [95% CI
0.52–1.45]). Insofar as the confidence interval widely over-
laps 1 in women with dense breasts, there may be no net
benefit of mammography screening in women with dense
breasts.

Gram et al [14] described five density patterns of Tabár
that are used in the Swedish screening program. Only the
two nodular and very dense patterns (IV and V) have been
associated with increased risk of developing breast cancer
of 2.4-fold, though the uniformly concave pattern I can also
mask breast cancer [15, 16]. At 25 years of follow-up,
women with dense breasts had a 1.9-fold higher mortality
rate from breast cancer compared to women with fatty
breasts, which was primarily attributed to higher incidence
of disease [15].

The Breast Imaging Reporting and Data System (BI-
RADS) [17] categories of breast density (developed through
the American College of Radiology) are usually included in
mammographic reports: (A) almost entirely fatty; (B) scattered
areas of fibroglandular density; (C) heterogeneously dense,
which may obscure detection of small masses, and (D) ex-
tremely dense, which lowers the sensitivity of mammography
(Fig. 1). The latter two categories are considered ‘dense’. In the
latest edition of BI-RADS, greater emphasis is placed on the
masking effect: In breasts where even a region of the breast is
dense, small non-calcified masses can be hidden, and such
breasts should be classified as heterogeneously dense [17].

Approximately 43% of women aged 40–74 years have
dense breasts [18]. Around menopause, breast density tends
to decrease in some women as the glandular tissue involutes
(Fig. 2). Automated software programs have been devel-
oped for quantitative, reliable measurement of breast den-
sity [19–21]. Methods implemented for assessment of
mammographic breast density include visual, semi- or fully
automated approaches that include quantitative measure-
ment of area-based or volumetric parameters. Visual, qual-
itative methods are based on human judgement and are
therefore subjective; inter-observer variability can be sig-
nificant among radiologists, whereas automated quantita-
tive software provides results that are less subjective and
more consistent [22].

Mammographic density is one of the strongest risk factors
for breast cancer: Women with extremely dense breasts have a
four- to sixfold higher risk of developing breast cancer com-
pared to those with fatty breasts [16]. It is estimated that den-
sity accounts for 39% of premenopausal and 26% of postmen-
opausal breast cancer [23]. Breast density is now incorporated
in some risk models and should be considered in risk-based
screening and targeted prevention [24, 25].

Breast density decreases the sensitivity of mammography due
to masking of non-calcified cancers, potentially delaying diag-
nosis with worse outcomes [26–28]. Studies have highlighted a
decrease in the sensitivity of mammography from a level of
85.7–88.8% in women with almost entirely fatty breasts to
62.2–68.1% in women with extremely dense breasts [29, 30];
mammographic sensitivity in dense breasts is under 50% when
screening ultrasound has been performed and closer to 33% in
studies where MRI has been included [31]. Cancers in women
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with dense breasts tend to be larger at detection [32]; this may be
due tomore rapidly growing tumours, delayed detection, or both.

Full-field digital mammography has a slightly higher sen-
sitivity compared to analogue film-screen mammography in
women with dense breasts [33]. Recently the European
Society of Breast Imaging (EUSOBI) and 30 national breast
radiology bodies recommended the adoption of digital
mammography as a first priority to improve mammographic
sensitivity in women with increased breast density [34].

Beyond 2D mammography

Digital breast tomosynthesis (DBT)

Tomosynthesis, also known as 3D mammography, is a digital
mammographic technique where low-dose images are ac-
quired from multiple angles as the x-ray tube moves in an
arc over the breast. Data from these projection images are
typically reconstructed into 1-mm slices [35]. Automated
breast density software has been developed for DBT with
documented reliability of volumetric measurements [21, 36].

Three prospective population-based trials, the STORM tri-
al from Italy [37] and the Oslo tomosynthesis trials [38, 39],
showed that adding DBT to digital mammography resulted in
an additional 2.7 and 2.3 cancers detected per 1,000 screens,
respectively. Friedewald et al [40], using historical multicentre
data, showed that adding DBT improved cancer detection by
1.2 (95% CI, 0.8–1.6) per 1,000 screens. DBT improved can-
cer detection and reduced recalls in the subgroups of women
with scattered fibroglandular density and heterogeneously
dense breasts; there was no significant drop in recalls from
DBT in women with fatty breasts and no improvement in
cancer detection in women with extremely dense breasts
[41]. Similar results were reported by Kim et al [42]. Meta-

analysis has shown an absolute reduction in recall rate of 0.8–
3.6% [43] from tomosynthesis and this benefit appears
sustained [44], though further validation is needed.

Screening ultrasound

Multiple studies have shown supplemental screening with
ultrasound (US) after mammography in women with dense
breasts increases breast cancer detection by 1.8–4.6 cancers per
1,000 women screened (Fig. 3), depending on disease preva-
lence [45–50]. Across 25 series, encompassing 363,886 screens,
842 cancers have been reported seen only with screening US
(2.3 per 1,000) (Table 1) [26–28, 45, 47–49, 51–55, 56–63].

The proportion of invasive carcinomas detected on US that
are node negative exceeded 80% in 16 of 20 studies where
reported and exceeded 90% in nine of 19 studies averaging
583/688 (84.7%) overall (Table 1). Similar supplemental can-
cer detection was shown each year for three years in ACRIN
6666 [48]. Excellent outcomes from cancers detected at sup-
plemental screening with US have been observed in a
multicentre retrospective analysis with 7-year follow-up of
501 women reported by Kim et al [64] who found that women
with US-detected cancer had 98% 5-year disease-free surviv-
al. The Japan Strategic Anti-cancer Randomised Trial (J-
START) [58] showed significantly higher sensitivity in wom-
en assigned supplemental US (intervention) compared to the
control group assigned only mammography. Cancers detected
in the intervention arm were more frequently stage 0 and I
(144/202 [71.3%] vs. 79/152 [52.0%], p = 0.0194).

Interval cancers are those detected because of clinical symp-
toms in the interval between recommended screens. Interval
cancer rates are reduced by addition of screening ultrasound to
mammography, and in all studies were less than 10% of all
cancers [58, 65]. In the ACRIN 6666 study, the interval cancer
rate was 9/111 (8%) across 3 years of study, suggesting that

Fig. 1 Examples of each category of breast composition: (a) fatty; (b)
scattered fibroglandular density; (c) heterogeneously dense which could
obscure detection of small masses; and (d) extremely dense which lowers

the sensitivity of mammography. A breast which is heterogeneously
dense in only one quadrant as in (e) should be classified as
heterogeneously dense.
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Fig. 2 Breast density tends to
decrease with age, particularly
around menopause. (a) Bilateral
mediolateral oblique (MLO)
mammograms in this 47-year-old
woman show extremely dense
parenchyma. The patient went
through menopause at age 48. (b)
Bilateral MLO mammograms 4
years later (same patient) show
decrease in breast density, now
heterogeneously dense, due to
normal perimenopausal
involutionary changes

Fig. 3 This 52-year-old woman has heterogeneously dense parenchyma
as seen on (a) MLO and (b) craniocaudal mammograms which are
otherwise negative. Due to breast density, automated screening US
(ABS) was also performed. (c) Coronal ABS left upper outer breast
shows possible hypoechoic mass and distortion (curved arrow). (d)

Transverse ABS confirms an irregular, hypoechoic mass (short arrow).
(e) Targeted HHUS shows an irregular 0.9 cm mass (arrow), highly
suspicious for malignancy. Biopsy showed grade 2 invasive lobular
carcinoma, ER(+), PR/HER2(-), Ki-67 <1%, 0.8 cm at excision, with
negative sentinel node biopsy
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combined ultrasound and mammography was an effective strat-
egy in women with a personal history of breast cancer or other
intermediate risk factors and dense breasts [48]. In J-START, the
interval cancer rate was halved, to 0.5 per 1000, representing 18/
202 (8.9%) cancers, in the arm receiving screening US.

Analysis of results from technologist-performed handheld
screening US (HHUS) using standard documentation has
shown a cancer detection rate of 2.5 per 1,000 [66] that ap-
pears to be slightly lower than the 5.3 per 1,000 rate observed
across physician-performed screening US studies, though in
part this reflects differences in disease prevalence [45, 47, 48].
HHUS is limited by a shortage of well-trained physicians and
technologists, small field of view, and the requirement that a
finding must be observed during scanning (operator depen-
dence). Importantly, however, operator dependence for
screening ultrasound is not worse than variation in mammo-
graphic interpretation [67]. Berg et al found high reliability of
11 experienced breast imaging radiologists in detecting and
characterising lesions larger than 9 mm with US in patients
[68] and for 64 specialist radiologists for lesions 5–9 mm in
size in phantoms [69].

False positives increase when ultrasound is added to mam-
mography. A 15.1% (95% CI: 13.5–16.6) absolute increase in
call-backs was observed with the first, prevalent, screen in
ACRIN 6666, which dropped to 7.4% (95% CI: 6.6–8.2) for
incidence screens when prior US was available [48]. For
technologist-performed US, Weigert et al [59] observed a
12.0% absolute increase in recalls in the first round of screen-
ing, which dropped to an average 9.9% in subsequent years.

In order to separate detection from image acquisition,
and thereby potentially improve the availability of screen-
ing US, automated breast sonography (ABS) has been de-
veloped. Typically using a field of view of 15 cm and 3–5
acquisitions per breast, ABS can provide standardised ex-
aminations and global visualisation of the breast tissue.
Such an examination produces several thousand images for
review; the interpretation time in published series varies
between 2.9 min and 9 min [55, 57, 70, 71]. As with every
imaging modality, there is a learning curve, depending on
individual radiological experience and protocols [55]. ABS
can be used for the measurement of breast density [72, 73],
but incorporation of such techniques into clinical practice
remains investigational.

ABS showed incremental cancer detection rate (ICDR) of 30
cancers among 15,318 women screened (2.0 per 1,000) in a
prospective multicentre study [57]. Of the 30 cancers detected
only with ABS, 28 (93.3%) were invasive with a mean size of
12.9 mm and 25/27 (92.6%) invasive cancers staged were node
negative. The absolute increase in recall rate was 13.5% [57]
(Table 1) and, importantly, recalls from ABS are for immediate
additional evaluation usually with HHUS. By comparison, a
final assessment is typically rendered from HHUS (to include
biopsy or short-interval follow-up), with only 50/16,676 (0.3%)

technologist-performed HHUS examinations recalled for imme-
diate additional evaluation (BI-RADS 0) across five series [66].

A study fromSweden, the EuropeanAsymptomatic Screening
STUDY (EASY), showed an ICDR of 2.4 per 1,000 women
screened with ABS and almost stable recall rate of 2.3% [55].
In a reader study, ABS significantly increased detection of breast
cancer with insignificant increase in false-positive rate [74]. A few
studies comparing ABS and HHUS have shown similar lesion
visualisation and assessments [75, 76]. Barriers to ABS imple-
mentation include the several thousand images to be reviewed
with average 6-min interpretation time [55] and learning curve
to dismiss artefactual posterior shadowing at the interface of fat
lobules [55, 57, 71]. A few studies have shown that addition of
computer-assisted detection can reduce time needed to interpret
ABS without loss of diagnostic accuracy [77, 78].

Two studies have compared the performance of supplemen-
tal DBT and US in cancer detection in women with dense
breasts and normal 2D mammography (Table 2). Interim anal-
ysis of first-year results among 3,231women in theASTOUND
trial [79] reported 24 additional cancers detected (23 invasive):
DBT showed 13 (ICDR, 4.0 per 1,000 screens; 95% CI, 1.8–
6.2) and physician-performed HHUS significantly more at 23
(ICDR, 7.1 per 1,000 screens; 95% CI, 4.2–10.0, p = 0.006),
while incremental false-positive recall and added biopsy rates
were similarly low [79]. Destounis et al [80, 81] retrospectively
analysed results from 7,146womenwith dense breasts screened
with DBT followed by technologist-performed HHUS. That
study reported on 39 cancers (30 invasive); four of them were
recognised only by DBT versus 17 (invasive) cancers solely by
HHUS, with the few DBT-only detected cancers seen as calci-
fications [80]. Further study is ongoing.

Magnetic Resonance Imaging (MRI)

According to American College of Radiology guidelines, sup-
plemental MRI is recommended annually beginning at age 25–
30 years in women at high risk for breast cancer [82]. The
National Comprehensive Cancer Network (NCCN) guidelines
recommend MRI instead of mammography from ages 25–29
years in high-risk women and thereafter as a supplement to
mammography [83]. Importantly the Gail and BCSC models
should not be used for estimating risk pertinent to deciding on
MRI screening, though the Claus model can be used [82].
NCCN recommends MRI also be considered for supplemental
screening in women with prior atypical biopsy or lobular car-
cinoma in situ due to a lifetime risk of 20% or more [84], and
the American College of Radiology recently recommended an-
nual supplemental MRI screening for all women with a person-
al history of breast cancer diagnosed by age 50 years and for
those diagnosed later with dense breasts [85]. The relative
amount of fibroglandular tissue should be included in the
MRI report, together with background parenchymal
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Table 1 Results of studies examining screening ultrasound as an adjunct to mammography in women with dense breasts

Author, year No. of
women
with
cancer a

No. of women
screened

CDR
per
1,000

Net added
recalls due
to US, n (%
of screens)

Biopsy
rate, n
(%)b

PPV3 of
biopsies
prompted
only by US
(%)c

No. invasive,
grade

Mean size
(mm, range)

Node
negative (%)

DCIS (% of
cancers), grade

BI-RADS
3 due to
US, n (%)

Commentsd

Single-centre studies
Gordon,
1995

30 12,706 2.4 NR NR 44/279 (16) 44, no details
about grade

11 (4–25) NR 0 NR Diagnostic population

Buchberger,
2000

40e 8,970 4.5 NR NR 40/405 (9.9) 35, no details
about grade

9.1 (4–20) 33/35 (94.3) 5 (12.5), no
details about
grade

NR 8,103 women in a
screening population
and 867 in a diagnostic
population

Kaplan,
2001

5 1,862 3.2 176 (9.5) 97 (5.2) 6/96 (6.3) 5, no details
about grade

9 (6–14) 5/5 (100) 1 (16.7), no
details about
grade

72 (3.9) Technologist performed

Kolb, 2002 34 5,418 women,
13,547
screens

2.7 799 (5.9) NR 37/358 (10) 36, no details
about grade

9.9 (range: NR) 25/28 (89.3)f 1 (2.7), no
details about
grade

NR 1,354 exams in women
with abnormal
mammogram or CBE

Crystal,
2003

7 1,517 4.6 90 (5.9) 38 (2.5) 7/38 (18) 7; 1 low, 1
intermediate,
4 high grade
and 1 lobular

9.6 (4–12) 6/7 (85.7) 0 NR

Leconte,
2003

16 4,236 3.8 NR NR NR 14, no details
about grade

7 (4–17) NR 2 (12.5), no
details about
grade

NR Included 136 women
with palpable mass

Brancato,
2007

2 5,227 0.4 NR 65 (1.2) 2/65 (3.1) 2, no details
about grade

NR 2/2 (100) 0 NR Mammography-negative
women

De Felice,
2007

12 1,754 6.8 NR 46 (2.6) NR 10, no details
about grade

10 (5–15) 10/10 (100) 2 (16.7), no
details about
grade

NR

Youk, 2011 17 1,418 12.0 200 80 (5.6) 17/80 (21.3) NRg 13 (6–20) NRg NRg 176 (12.4) Mammography-negative
women, retrospective
database review,
general screening and
personal history of
breast cancer subsets

Hooley,
2012

3 935 3.2 234 (25.0) 53 (5.7) 3/63 (4.8) 2, no details
about grade

6.3 (5–9) 2/2 (100) 1 (33.3), no
details about
grade

187 (20.0) Technologist performed

Parris, 2013 10 5519 1.8 680 (12.3) 181 (3.3) 10/181 (5.5) 10, no details
about grade

9.7 (4–15) 7/9 (77.8) 0 452 (8.2) Technologist performed

Girardi,
2013

19
22

12,171 (fatty)
9960 (dense)

1.6
2.2

NR 422 (1.9) 41/422 (9.7) 37, no details
about grade

8 (5–12) 36/37 (97.3) 4 (9.8), no
details about
grade

NR Mammography-negative
women

Bae, 2014 329 106,829 women,
116,656
screens

3.1 NR NR NR 282, no details
about grade

NRh 253/282 (89.7) 53 (15.8) no
details about
grade

NR Retrospective database
review

Korpraphong,
2014

19 14,483 screens 1.4 NR NR NR NR NR NR NR NR Women of all breast
densities
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Table 1 (continued)

Author, year No. of
women
with
cancer a

No. of women
screened

CDR
per
1,000

Net added
recalls due
to US, n (%
of screens)

Biopsy
rate, n
(%)b

PPV3 of
biopsies
prompted
only by US
(%)c

No. invasive,
grade

Mean size
(mm, range)

Node
negative (%)

DCIS (% of
cancers), grade

BI-RADS
3 due to
US, n (%)

Commentsd

Chang, 2015 5 990 5.1 366 (37.0) 84 (8.5) 5/84 (6.0) 3 (1 low, and 2
intermediate)

6 (0–15) 3/3 (100) 2 (40) 282 (28.5)

Moon, 2015 3 1656 1.8 592 (35.7) 86 (5.2) 2/86 (2.3) 1 9 1/1 (100) 1 (50) 504 (30.4) 1 ILC assessed as BI-
RADS 3 was detected
at 11 months

Wilczek,
2016

4 1,668 2.4 15 (0.9) 12 (0.7) 4/12 (33) 4 (2 low, 1
intermediate,
1 high grade)

10 (6–14) 2/4 (50) 0 NR ABS, technologist
performed

Destounis,
2017

18 4,898 women,
5,434 screens

3.3 NR 100 (2.0) 18/100 (18.0) 18 (5 low, 7
intermediate,
4 high grade
and 2 not
specified)

1–5 mm: 1 case;
6–10 mm: 7
cases; 11–15
mm: 4 cases;
16–20 mm: 1
case; >20
mm: 4 case;
not specified:
1 case

14/18 (78.0) 0 101 (1.9)i Retrospective review

Multicentre Studies
Corsetti,
2008

37e 9,157 4 NR 449 (4.9) 50/449 (11.1)j 36, no details
about grade

NRk 31/36 (86.1) 1 (2.7), no
details about
grade

NR Self-referred women;
13/50 cancers
excluded (palpable or
symptoms)

Kelly, 2010 23e 4,419 women,
6,425 screens

3.6 557 (8.7) 75 (1.2) 23/75 (30.7) 22 (7 low, 13
intermediate,
2 high)

5 mm or less: 1
case; 6–10
mm: 13
cases; 11–20
mm: 6 cases;
21–50 mm: 1
case; >50
mm: 1 case

NR 1 (4.3), no
details about
grade

77 (1.2) Automated arm,
technologist acquired

Berg, 2012,
prevalence

14 2,659 5.3 401 (15.1) 207 (7.8) 12/207 (5.8) 30 (11 low, 7
intermediate,
6 high, 5
lobular and 1
mixed
ductal--
lobular)

10 (median;
range: 2–40)

29/30 (96.7) 2 (6.25) (1
intermediate-
and 1
high-grade)

284 (10.7) 1st screen; at least 1 other
risk factor, 20% were
high-risk women; ≥
BI-RADS 3 = positive.

Berg, 2012,
incidence

18 4,841 screens 3.7 356 (7.4) 242 (5.0) 18/242 (7.4) 180 (3.7) Year 2, 3 screens; 612
women hadMR screen
after year 3 US screen

Weigert,
2017,
prevalence

11 2,706 4.1 325 (12.0) 151 (5.6) 11/151 (7.3) 9 (1 low, 6
intermediate,
2 high)

25 (12–80) 7/9 (77.8) 2 (18.2), all
intermediate
grade

174 (6.4) Technologist performed,
BI-RADS 3 or higher
considered recall as
presented

Weigert,
2017,
Incidencel

30 10,810 screens 2.8 1073 (9.9) 379 (3.5) 30/379 (7.9) 25 (3 low, 17
intermediate,
5 high grade)

10.9 (4–30) 20/25 (80.0) 5 (16.7) (4
intermediate,
1 high grade)

694 (6.4) Technologist performed,
BI-RADS 3 or higher
considered recall as
presented
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Table 1 (continued)

Author, year No. of
women
with
cancer a

No. of women
screened

CDR
per
1,000

Net added
recalls due
to US, n (%
of screens)

Biopsy
rate, n
(%)b

PPV3 of
biopsies
prompted
only by US
(%)c

No. invasive,
grade

Mean size
(mm, range)

Node
negative (%)

DCIS (% of
cancers), grade

BI-RADS
3 due to
US, n (%)

Commentsd

Brem, 2015 30 15,318 2.0 2063 (13.5) 551 (3.6) 30/551 (5.4) 28, no details
about grade

12.9 25/27 (92.6) 2 (6.7), no
details about
grade

19 (0.1) ABS, technologist
performed

Ohuchi,
2016

67 36,752 1.8 1932 (5.25) NR NR 55, no details
about grade

14.2 47/55 (85.5) 11 (16.7), no
details about
grade

NR Women aged 40-49
with any breast
density

Buchberger,
2018

36 66,680 0.5 397 (0.60) 201 (0.30) 36/201 (17.9) 33, no details
about grade

14 (median;
3–32)

25/33 (75.8) 3 (8.3), no
details about
grade

1255 (1.9) Population-based
observational study in
Tyrol, Austria ages
40-69, all breast
densities

ABS Automated Breast Sonography, BI-RADS, Breast Imaging Reporting and Data System, CDR cancer detection rate, DCIS ductal carcinoma in situ, NR not reported, PPV positive predictive value, US
ultrasonography
aNumber or women found to have cancer on screening ultrasound
b Percent of women who underwent biopsy due to screening US
c Percent of lesions biopsied due to screening US that were malignant
d Studies utilised physician (radiologist) performed handheld screening ultrasound unless otherwise specified
e These studies referred to numbers of cancers (and not to the number of women)
f Kolb et al provided this information for 28 of 36 invasive cancers
g Youk et al provided data about eight of ten cancers diagnosed in the general screening arm (seven of eight were DCIS or stage 1; one of eight was node positive)
h Bae et al did not report mean tumour size or range but 176/335 (53%) were minimal cancers and 52 (16%) were stage II
i Destounis et al provided this as a fraction of screens
j Thirteen of these women were found to have symptoms and were excluded from ‘US-screen-detected’ cancers
k Corsetti et al did not provide the mean tumour size or range but 3/36 were stage T1a, 20/36 T1b, 10/36 T1c, 2/36 T2 and 1/36 stage T3
l Five women with high-risk lesions are not included among women with cancer. In year 4 of Weigert et al of 3,331 US, 53 recommended biopsies, ten cancers, 358 BI-RADS 3: higher PPV3 but very high
BI-RADS 3 rate
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enhancement (BPE); BPE may correlate even more strongly
with risk of developing breast cancer [86]. Breast density can
be quantified on MRI but this is not routine [87].

The sensitivity of MRI in high-risk women varies across
studies from 71% to 100%, but importantly is not influenced
by breast density. A meta-analysis of 11 studies showed a sen-
sitivity of 77% for the performance of MRI alone and 94%
when MRI was combined with mammography [88].
However, according to recent studies, simultaneous screening
mammography has minimal added value in the detection of
breast cancer in women who undergo screening with MRI
[89–91], particularly in women with pathogenic BRCA1 muta-
tions [92]. Prospective cohort studies have shown a cancer de-
tection rate for MRI alone of 8.2–15.9 per 1,000 [88, 93–95].

In women with familial high-risk, the sensitivity of MRI is
not affected by breast density; therefore, the National Institute
for Health and Care Excellence [96] and the GC-HBOC [97]
recommend annual MRI alone for the evaluation of women
with familial high risk between the ages of 30–39 years without
a personal history of the disease. Annual MRI surveillance
increases the detection of small invasive cancers in pathogenic
BRCA1/BRCA2 carriers. Although there are important differ-
ences in the natural history of breast cancers in BRCA1 com-
pared with BRCA2mutation carriers, an analysis by Heijnsdijk
et al [92] showed that implementation of MRI improved
metastasis-free survival in both carrier subgroups after an aver-
age of three rounds of screening per woman; eight interval
cancers occurred in 801 BRCA1mutation carriers (representing
10.9% of all cancers in that subgroup, 3.6 per 1,000 screens)
compared to two among 474 BRCA2 mutation carriers
(representing 3.9% of all cancers in that subgroup, 1.7 per
1,000 screens). The faster growth rate of triple-negative and
basal phenotype tumours common in women with pathogenic
BRCA1 mutations should be kept in mind [98, 99]. To address
this, some high-risk screening programs recommend 6-month
surveillance with clinical examination and/or breast US in ad-
dition to annual screening with MRI [100], though generally
screening US is not of benefit in women screened by MRI [31,
90, 91, 95]. Modelling studies suggest 6-month alternating
mammography and MRI yields slightly better outcomes than

concurrent annual screening, with earlier detection of node-
negative invasive cancers in high-risk women [101, 102].

False-positive rates represent a point of discussion regard-
ing MRI screening; specificity of MRI varies across studies
[31, 95, 103, 104], with recall rates centred at approximately
about 10% [105–107]. Positive predictive value of biopsies
performed (PPV3) after MRI ranges between 22.0% and
63.2% [101–107]. As for screening mammography and ultra-
sound, false positives are highest for prevalent screening MRI
and decrease with subsequent rounds [103].

Importantly, MRI has been shown to downstage the disease
[95]. Warner et al reported reduced advanced stage (stage II–
IV) disease (1.9% vs. 6.6% among matched controls not able
to haveMRI) and increased node-negative invasive cancers in
the MRI group (85% vs. 54% in the control group) [108].

Excluding those who have bilateral mastectomy, women
with a personal history of breast cancer (PHBC) have a higher
risk of the disease compared to pathogenic mutation-free wom-
en with a family history [109], with lifetime risk of a second
cancer exceeding 20% for those diagnosed by age 50 years or
those diagnosed later with dense breasts [85]. Mammographic
sensitivity is reduced and interval cancer rate is at least doubled
in women with PHBC [10]. When PHBC is present, MRI has
considerably increased sensitivity compared to mammography;
cancer detection rate for MRI is 10–29 cancers per 1,000
screens in such women [85, 109–113]. It has been shown that
the addition of MRI in the surveillance of women with PHBC
before the age of 50 years improves the detection of aggressive
cancers and reduces the interval cancer rate [114].

One prospective observational study was conducted by
Kuhl et al [104] to investigate the utility and accuracy of
MRI as a supplemental screening tool in women at average
risk for breast cancer. This study showed an overall supple-
mental cancer detection rate of 15.5 per 1,000 screens (sup-
plemental cancer detection rate 22.6 per 1,000 cases at initial
screening and 6.9 per 1,000 cases at subsequent screening
rounds) across all density categories; 85% of women with
incident cancers had been screened with US also within the
study. MRI-depicted cancers were small (median: 8 mm),
node negative (93.4%) and 43% were high-grade; DCIS

Table 2 Results of studies comparing performance of tomosynthesis (DBT) and ultrasound in women with mammography negative dense breasts

Author,
year

Total
no. of
cancers

No. of
women
screened

No. of cancers
detected only
by DBT

No. of cancers
detected only
by US

CDR
of DBT

CDR
of US

Recall
rate of
DBT

Recall
rate of
US

PPV3
of DBT

PPV3
of US

Comments

Tagliafico,
2016

24 3,231 1 11 4.0 7.1 53 (1.7) 65 (2.0) 13/35 (37.1) 23/47 (48.0) Mammography-negative
women; interim
analysis of 1st year
results

Destounis,
2017

39 7,146 4 17 3.0 4.9 NR NR NR NR Retrospective review

CDR cancer detection rate per 1,000 screens, DBT Digital Breast Tomosynthesis, NR not reported, US ultrasonography
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Table 3 Performance of Abbreviated Screening Breast MRI

Author, year No. of
cancersa

No. of women screened CDR per 1,000
screens

Population Biopsy rateb

(BR4 or 5, %)
PPV3 of bx
(%)c

BR 3 Overall recall rate
(%)

Kuhl, 2014 11 443 women
606 screens

18.2 105 women only dense
220 PHBC
118 family hx

45 (10.2) 11/45 (24.4) 53 (8.7) 98/606 (16.2)

Jain, 2016 9 591 15.2 High-risk 39 (6.6) 10/40 (25.0) NS 39/591 (6.6)

Chen, 2017e 13e 356 36.5 Dense; 6 PHBC; 29 family hx 59 (16.6) 13/59 (22.0)f NSf 59/356 (16.6)

Strahle, 2017 6g 671 8.9 all
16.3 dense

367 dense;
141 had family hx; no PHBC

or known BRCA mutation

16 (2.4)
16 (4.4) dense

7/17 (41.2) 0 16/671 (2.4) all
16/367(4.4) dense

Panigrahi,
2017h

14 746 women
1052 screens

13.3 High risk 47 (6.3) 14/46 (30.4) 35 (3.3) 82/1052 (7.8)

Choi, 2018 12i 725 women
799 screens

15.0 PHBC 14 (1.9) 12/19i (63.2) 83 (10.4)i 97/799 (12.1)

Magnet (T) C+ sequences T2/STIR No.of invasive
cancers

Mean size
(mm, range)

Node negative
(%)

No. of DCIS, grade

Kuhl, 2014 1.5 1 axial T1 no FS ND 7 8.4 (4–17) 7/7 (100) 4, all gr 2-3

Jain, 2016 1.5 or 3 1 axial T1FS ND 7 NS NS 2d 1 gr2, 1 NS

Chen, 2017 3 1 axial T1FS NDf 9 All ≤ 1 cm 9/9 (100) 4, 1 gr2, 3 gr3

Strahle, 2017 1.5 2 axial T1FS (@1.5 and 6
min)

T2FS 4 19 (7–40) 4/4 (100) 2g

Panigrahi,
2017h

1.5 or 3 1 axial T1FS ND 12 10.7 (4–17) NS 2, gr 1

Choi, 2018 1.5 or 3 1 sagittal T1FS T2FS 7i 15 (5–20) 6/7 (85.7) 5i

For all examinations, a scout localiser and pre-contrast T1W images were obtained; subtraction of the pre-contrast MRI from the first post-contrast MRI was performed and maximum intensity projection
images were created from the subtraction images.

C+ contrast-enhanced, ND not done, PHBC personal history of breast cancer, NS not stated, BR BI-RADS assessment, IDC invasive ductal carcinoma, DCIS ductal carcinoma in situ, gr nuclear grade
a Number of women found to have cancer
b Biopsy rate, number of women biopsied as % of women screened
cNumber of biopsies malignant/total number of biopsies performed
dAn additional high nuclear grade DCIS was diagnosed in a patient who also had IDC on MRI
eA separate publication by these authors in Academic Radiology 2017 details 16 cancers in 478 women and 41 biopsied lesions; these are likely overlapping series but extent of overlap, particularly among
lesions biopsied, is unclear
f An additional IDC was considered probably benign on the abbreviated protocol and suspicious when diffusion-weighted imaging (DWI) was added to the abbreviated protocol; only 31 biopsies would
have been performed after DWI, of which 14 were malignant
g Seven malignancies were identified in six women: Two lesions of DCIS were identified in one patient (overall three DCIS lesions)
h This series appears to entirely include what appears to be a subset published in 2016 by Harvey SC et al JACR
i This institution lacked MRI-biopsy capability. 83 exams were assessed as BR3 on MRI, with five upgraded to BR4 at follow-up, 4 of which proved malignant, including two DCIS, one IDC and one
mucinous carcinoma: 4/83 (4.8%) BR3 exams proved malignant
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represented 33% of all cancers [104]. There were no interval
cancers. Those authors concluded thatMRI screening improves
early diagnosis of prognostically relevant breast cancer.

Berg et al [115] reported 512/1215 (42.1%) women at elevat-
ed risk declined a no-costMRI in the final year of ACRIN 6666.
Recent reports of gadolinium accumulation in parts of the brain
and elsewhere have raised concerns and prompted a ‘black box’
warning [116], though there is no known adverse effect from
this and deposition is nearly immeasurable with macrocyclic
chelates of gadolinium [117]. To improve access and tolerance
and reduce cost, Kuhl and colleagues [118] introduced the ultra-
fast, 3-min breast MRI for screening, and demonstrated that
abbreviated breast MRI maintained comparable sensitivity and
specificity to the full diagnostic protocol. Table 3 summarises
results of abbreviated MRI to date [118–123]. The incremental
cancer detection rate following abbreviated screening breast
MRI ranges between 8.9 and 36.5 cancers per 1,000 screens.

Future perspectives

There has been exploratory effort to evaluate contrast-
enhanced spectral mammography (CESM) in the screen-
ing of women with dense breasts. In preliminary studies,
CESM shows cancer detection comparable to MRI, with
improved specificity [124], though few data from screen-
ing are yet published. Jochelson et al [125] reported re-
sults from 307 women at increased risk who had screen-
ing CESM and MRI; two invasive cancers were seen on
both modalities and one DCIS was seen only on MRI.
PPV3 was 2/13 (15% for CESM) and 3/21 (14%) for
MRI. There were more BI-RADS 3 assessments on
MRI, with reduced specificity of MRI, but biopsy capa-
bility has only recently become available for CESM
[125]. Unenhanced MRI technique using diffusion
weighted imaging (DWI) is another promising modality

Fig. 4 Flow chart illustrating a screening decision support tool according
to risk stratification. aHigh risk is defined as: women with a known or
suspected pathogenic mutation in BRCA, TP53, CHEK2, PTEN, ATM,
CDH1, STK11 and PALB2; women having a lifetime risk greater than
20% according to acceptable models that determine risk of pathogenic
mutations, with Tyrer-Cuzick model the most accurate at the population
level (and which includes breast density as a risk factor); women treated
with chest or mantle radiation therapy by age 30 years and at least 8 years
prior. bA personal history of lobular carcinoma in situ confers almost as

high a risk as personal history of breast cancer and such women should
consider supplemental screening with MRI, especially if the breasts are
dense. Atypical lobular hyperplasia (ALH) and atypical ductal
hyperplasia (ADH) confer 20–25% lifetime risk as well but there are no
studies showing improved cancer detection in women with ALH or ADH
who undergoMRI screening in addition to mammography. cDigital breast
tomosynthesis (DBT) with synthetic reconstructions can be used instead
of digital mammography
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for the detection of challenging, mammographically oc-
cult breast cancers in women with dense breasts; the ad-
vantage of DWI is the ability to distinguish between nor-
mal microscopic tissue and malignancy without the use of
intravenous gadolinium [126], though generalisability of
DWI remains problematic [127].

Molecular breast imaging (MBI) is functional rather than
anatomic imaging; standard views are obtained similar to
mammography, i.e. craniocaudal and mediolateral oblique
projections, for 10 min each, while mild compression is ap-
plied after intravenous injection of 99mTc-sestamibi [128].
Recent studies evaluating MBI as a supplemental screening
technique for women with dense breasts have shown an ICDR
ranging between 7.5 and 8.8 per 1,000; the median size of
cancer detected only by MBI is approximately 1.0 cm. The
additional recall rate is 5.9–8.4%, while PPV3 varies between
19% and 33% [129–131].

Breast density inform and current practice

The potential impact of supplemental screening is gaining
global attention from patients and policymakers. In the
USA, 35 states have enacted legislation requiring some noti-
fication about breast density following a mammogram [132]
supplemental screening can be performed if ordered by a re-
ferring physician. In the UK Canada, and Australia, advocacy
groups are making great efforts encouraging the density dis-
cussion; the website DenseBreast-info.org was developed to
educate both patients and providers in the USA and will soon
add content specific to healthcare providers in Europe. In
France and Germany, for women with extremely dense
breasts, a supplemental physician-performed US has been
provided for many years and women are informed of this
option in Greece. In Austria, since 2013, the Austrian Breast
Cancer Early Detection Program provides supplemental US in
women reported to have dense breasts on mammography.
Currently, no clear guidelines have been established for wide-
spread supplemental screening; a proposal for risk-adapted
screening is illustrated in Fig. 4.

Conclusions

The sensitivity of mammography is lower in women with
dense breasts. Digital mammography has improved sensitivity
compared to film-screen mammography and should be widely
adopted in women with dense breasts. Breast density has been
established as an independent risk factor for breast cancer, and
cancers tend to be more advanced at diagnosis compared to
women with fatty breasts. US detects significantly more early-
stage, invasive breast cancers than screening with mammog-
raphy alone, leading to acceptably low interval cancer rates;

however, a shortage of trained operators has precluded wide-
spread implementation of HHUS. ABS is a promising tech-
nique but remains limited by the time to interpret and false
positives. Tomosynthesis has been widely implemented in
place of 2D mammography and has been shown to reduce
significantly the recall rate and to increase the cancer detection
rate, although it is less effective in women with extremely
dense breasts, and cancers may remain obscured in women
with heterogeneously dense breasts. Supplemental screening
with MRI in high-risk women has been shown to reduce late-
stage disease and improve metastasis-free survival; the high
cost has restricted MRI use to date. Widespread assessment
of risk to include breast density and ascertain those women
who should start early annual screening to include MRI is
needed. Abbreviated MRI protocols may reduce cost and in-
crease accessibility to women of average risk with dense
breasts. Other methods such as CESM and MBI improve can-
cer detection but require further validation for screening.
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