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Abstract

Screening mammography reduces breast cancer mortality; however, performance and resulting bene� ts are 
reduced in dense breasts. Increased breast density also represents an independent risk factor for breast cancer. 
Digital breast tomosynthesis (DBT), ultrasound (US), MRI, molecular breast imaging (MBI) and contrast-enhanced 
mammography (CEM) each have demonstrated improved cancer detection in dense breasts compared to 2D-dig-
ital mammography (DM). Producing simultaneous reduction of recalls, DBT is the preferred mammographic tech-
nique. US further increases cancer detection after DM or DBT and reduces interval cancers, but results in substan-
tial additional false positive � ndings. MBI improves cancer detection with e� ective radiation dose about four-fold 
that of DM or DBT, but still within accepted limits. MRI provides the greatest increase in cancer detection and 
decreases interval cancers and late-stage disease; abbreviated techniques will reduce cost and improve availabil-
ity. CEM appears to o� er performance similar to MRI, but further validation is needed. Dense breast noti� cation 
will soon be the national standard: understanding performance of mammography and supplemental modalities 
is necessary to optimize screening for women with dense breasts.

Recommended citation:
Berg WA, Ra� erty EA, Friedewald SM, Hruska CB, Rahbar H. Screening Algorithms in Dense Breasts: AJR Expert Panel Narrative 
Review. AJR September 9, 2020. Accepted manuscript. doi:10.2214/AJR.20.24436

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 W

en
di

e 
B

er
g 

on
 0

9/
09

/2
0 

fr
om

 I
P 

ad
dr

es
s 

26
01

:5
49

:c
18

0:
b5

60
:1

5b
9:

c1
1a

:c
ec

8:
34

a3
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



AC
CE
PT
ED

MA
NU
SC
RI
PT

 
 

Mammography and Breast Density 
Mammography is the only imaging modality proven to reduce breast cancer deaths as 

demonstrated across both randomized controlled trials and observational studies [1, 2]. 

In the United States, women at average risk for developing breast cancer are advised to 

commence mammographic screening between ages 40 and 50 and continue annually 

or biennially through age 70 or as long as the woman is in good health [3-5]. Greatest 

benefit is observed with annual mammography beginning at age 40 [6]. With peak 

incidence at younger age, in the 40s [7], it is particularly important to begin annual 

screening by age 40 for Hispanic and black women. 

However, not all women benefit equally from mammography. Mammographic 

performance is dependent on breast density. Breast density refers to the amount of 

fibroglandular tissue relative to fat and is determined mammographically, either visually 

or quantitatively. The Breast Imaging and Reporting Data Systems (BIRADS) 5th edition 

details four categories of breast density (from least to most fibroglandular tissue): 

BIRADS category A (fatty), B (scattered), C (heterogeneously dense), and D (extremely 

dense) [8] (Figure 1). Categories C and D are considered “dense”. While malignant 

calcifications remain well seen, noncalcified cancers (representing about 45% of 

invasive cancers [9]) can be masked by dense tissue. Mammographic sensitivities 

range from 81-93% in fatty breasts, 84-90% with scattered fibroglandular density, 69-

81% for heterogeneously dense breasts, to 57-71% for extremely dense breasts [10].   

Dense breasts are common. Approximately 36% of women over age 40 have 

heterogeneously dense breasts and 7% have extremely dense breasts [11]. To date, 

dense breast notification laws have been enacted in 38 states and the District of 

Columbia to alert patients to the possibility of a false negative mammogram due to 

masking by dense breast tissue; specific information and recommendations provided (if 

any) vary from state to state. National standardized reporting criteria are currently in 

development by the Food and Drug Administration [12]. 

Knowledge of a woman’s breast density is critical, as mammographic performance and 

resultant screening outcomes are significantly impacted. Both an increase in false 
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positives [10, 13] and a reduction in cancer detection are seen in women with dense 

breasts [14]. Women with dense breasts demonstrate lower reductions in breast cancer 

mortality [15, 16] and develop more interval cancers [17] than women with non-dense 

breasts.  

Interval cancers are cancers detected in between recommended screenings, typically in 

patients presenting symptomatically. Interval cancer rates vary, ranging from 0.8/1000 

in annual screening regimens to 2.11/1000 in biennial screening programs [18, 19]. 

Some interval cancers reflect more aggressive biology (triple negative or human 

epidermal growth factor 2 (HER2) receptor positive) with rapid growth. Other interval 

cancers, however, are histologically similar to screen-detected cancers and likely 

masked in dense breast tissue, going undetected on screening [20, 21]. Interval cancers 

are 13-18 times more common in women with extremely dense versus fatty breasts [22, 

23]. Tracking long-term outcomes from screening, Webb et al [24] reported 609 breast 

cancer deaths in a cohort screened over 10 years with 60/609 (9.9%) attributable to 

interval cancers.  More effective screening should reduce interval cancers. 

In addition to masking cancers, dense parenchyma is one of the strongest and most 

prevalent risk factors for developing breast cancer [25]. Compared to women with fatty 

breasts, women with extremely dense breasts are at 4- to 6-fold greater risk [26]. 

Depending on age and hormonal status, women with heterogeneously dense and 

extremely dense tissue are 1.4-1.6 and 1.5-2.1 times more likely to develop breast 

cancer respectively compared to women with scattered fibroglandular density [27].  

Data regarding histologic type, aggressiveness, size, and nodal status of breast cancers 

in dense breasts are sparse. A pooled analysis found younger women (<55 years old) 

with dense breasts are more likely to have estrogen receptor negative (ER-) tumors 

compared to older women [28]; increasing tumor size and positive lymph node status 

correlated with increasing breast density. 

Lymph node status remains the most important prognostic factor in breast cancer 

outcomes. Indeed, across the randomized trials of mammography, only those that 

increased detection of node-negative invasive cancers produced mortality reduction 
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[29]. Similarly, reducing late-stage disease contributes significantly to decreased 

mortality from breast cancer [30].  

Although mammography has proven value in reducing breast cancer mortality, the 

negative impact of breast density on mammographic performance highlights need for 

more effective screening strategies. Digital breast tomosynthesis (DBT), ultrasound 

(US), MRI, molecular breast imaging (MBI) and contrast-enhanced mammography 

(CEM) each have demonstrated value in improving breast cancer detection for women 

with dense breasts. Metrics associated with improved outcomes [increased incremental 

cancer detection rate (ICDR), especially of node-negative invasive cancers; reduced 

interval cancers; and reduced late stage disease] as well as recall rates will be 

examined for each modality. This comparative analysis of modality performance, in 

conjunction with information regarding availability and cost, can guide screening 

strategies in women with dense breasts.  

Digital Breast Tomosynthesis 

Digital breast tomosynthesis (DBT) is a digital mammographic technique that acquires 

multiple angled low-dose projection images and reconstructs them into thin (typically 1-

mm) slices [31]. By minimizing impact of superimposed structures, tomosynthesis 

enhances lesion visibility and reduces unnecessary recalls from summation artifacts 

[32]. Introduction of synthetic reconstructed 2D mammography has allowed radiation 

dose to remain comparable to conventional 2D-digital mammography (DM) [33] and for 

DBT with synthetic reconstructions to replace DM. 

DBT is proven effective in screening. Multi-institutional retrospective analysis revealed 

ICDR of 1.2/1000 (95%CI 0.8, 1.6, p<0.001) with DBT added to DM [34]. Two 

prospective European screening trials [35, 36] showed gains of 2.3 and 2.7 

cancers/1000 respectively for women screened with DBT. Notably, improved CDR is 

attributable to additional invasive tumors rather than ductal carcinoma in situ (DCIS), 

lessening potential for overdiagnosis. Limited data available regarding biologic subtypes 

of invasive cancers detected only with DBT suggest a trend toward detection of smaller 

(<2 cm) tumors with luminal A-like characteristics [37, 38]. Using TMIST criteria 
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[metastatic (including nodal metastasis); ≥ 1 cm and either HER2-positive or ER/PR-

negative or both; size ≥ 2 cm], Conant et al [39] reported greater detection of poor-

prognosis cancers with DBT than DM, though differences were not significant. Doubling 

detection of invasive lobular carcinoma has been observed [34], likely due to increased 

conspicuity of tumor spiculation and architectural distortion.  

An ongoing criticism of screening mammography is generation of false positive recalls, 

which prompt unnecessary additional evaluation and intervention [4]. DBT reduces false 

positive screening recalls due to summation artifact [32], and also because multiplicity 

and bilaterality of circumscribed masses is better depicted (allowing benign assessment 

[40]). In conjunction with gains in cancer detection, simultaneous absolute reduction in 

recall rate of 2% (relative reduction 15-17%) is achieved with DBT [34-36]. Importantly, 

Conant et al [39] demonstrated these gains were sustained over multiple rounds of DBT 

screening. However, interval cancer rates were not significantly impacted by DBT [39], a 

finding also reported by Bahl et al [41].  

Given the inverse relationship between mammographic sensitivity and increasing 

density, stratification of DBT performance by breast density is of particular interest. 

Table 1 summarizes four studies [13, 35, 42, 43] evaluating screening outcomes in 

women undergoing (DBT plus DM) vs. DM alone, stratified by breast density. DBT 

consistently increased cancer detection and decreased recalls in both “dense” and 

“non-dense” tissue. Rafferty et al [43] observed greatest gain in cancer detection and 

reduction in recalls in women with heterogeneously dense breasts (Figure 2). Women 

with extremely dense breasts experienced no improvement in cancer detection (Figure 
3), although false-positive recalls were reduced [43]. Osteras et al [42] saw a trend 

toward improved CDR in women with extremely dense breasts with no reduction in 

recalls (Table 1). Lowry et al [44] observed reduced recalls and improved CDR on 

incidence screening DBT (compared to DM) in women with heterogeneously dense 

breasts but not those with extremely dense breasts. 

DBT’s improved cancer detection and reduced recalls compared to DM are expected to 

produce improved health care outcomes at equivalent or reduced cost [45-47]. There is 
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now coverage by most major insurance carriers; at least 17 states and the District of 

Columbia mandate insurance coverage for screening DBT [48]. Despite addition of 

DBT, limitations in cancer detection persist, particularly in extremely dense breasts. 

These women would most benefit from supplemental screening strategies. 

Screening Ultrasound: Technique 

Unlike other methods of supplemental screening, screening US requires neither ionizing 

radiation nor intravenous contrast. There are several methods of performing whole-

breast ultrasound (WBUS), including physician-performed (usually radiologist) handheld 

US (HHUS), technologist-performed HHUS, and automated ultrasound (AUS). Training 

is necessary; for HHUS, a minimum experience of 500 breast US examinations was 

required of American College of Radiology Imaging Network (ACRIN) 6666 

investigators [49]. Billing is currently a “limited” breast US, current procedural 

terminology (CPT) code 76642, or “complete” breast US, CPT code 76641, which does 

not specify “screening” or “diagnostic” use, with a charge for each breast (right or left 

modifier). ICD-10 diagnosis code of R92.2, incomplete examination due to dense 

breasts, is used together with V76.19 “other screening”. Insurance will typically cover 

screening US when ordered by a healthcare provider, though deductibles/copays apply 

in most states. 

Handheld methods should use a high-frequency linear array transducer, at least 12 

MHz and ideally 17-18 MHz. Surveying is most efficient in transverse and sagittal 

planes; the axilla can be electively included. For a negative examination, documentation 

should include at least one image from each quadrant and the retroareolar region, as 

was validated in the ACRIN 6666 protocol [49]. For simple cysts, a single image is 

sufficient, and documentation is encouraged to reduce recalls from mammography/DBT 

(ACRIN protocol required only the largest simple cyst in each quadrant to be 

documented). For lesions other than simple cysts, orthogonal images should be taken 

without and with calipers in a manner that captures its longest diameter (often radial, 

like a clock-hand, along the duct system), with horizontal and anteroposterior diameters 

documented on that image and horizontal diameter on the orthogonal view. Power 
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Doppler can be used to document slow flow. Harmonics can help clear artifactual 

internal echoes in small cysts or clustered microcysts. Elastography can be applied to 

assess lesion stiffness. A cine loop can be obtained for later review when doing batch 

reading and can be helpful when technologists performing HHUS are uncertain about 

vague findings.  

Uncommonly, a “technical recall” is needed to distinguish artifactual shadowing at the 

interface of fat lobules, or intraductal debris, from a true mass. An isolated 

circumscribed oval hypoechoic or isoechoic mass seen only on US can be assessed as 

BI-RADS 3, probably benign, but follow-up at the time of annual screening US is 

reasonable [50]. Failure to document a mass being followed can also prompt a technical 

recall (at no additional charge).  

The most common method of AUS uses a wide (15-cm) curved transducer to acquire 

transverse images with coronal and sagittal reconstructions. A minimum of 3, and 

sometimes 5-6, acquisitions are needed to cover the breast. A semi-automated 

approach uses an automated arm and a standard transducer [51]. A final assessment 

typically can be rendered with HHUS, including BI-RADS 4 or 5 with biopsy 

recommendation (and contacting the patient and physician), whereas additional 

targeted US is needed for the vast majority of AUS recalls; Doppler and elastography 

are not available during AUS. 

Outcomes from Screening US 

In women with dense breasts, incremental CDR averages 2.0 to 2.7 per 1000 using 

either HHUS or AUS technique and 88% of cancers detected only on screening US are 

invasive [52] (Figure 4). With physician-performed HHUS, where detailed, 497/554 

(89.7%) of invasive cancers detected were node negative as were 102/123 (82.9%) 

detected by technologist-performed HHUS and 63/69 (92%) invasive cancers found on 

AUS [52]. Mean size of invasive cancers ranged from 7-14 mm in nearly every series 

and invasive lobular cancers represent 15-20% of those detected only by screening US. 
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On average, about 3% of women will be recommended for biopsy on the prevalence 

round of screening US [52], with a wide range of 2 to 30% malignancy rates for 

suspicious findings seen only on ultrasound. Net added recalls from screening US 

average 7.5% of women with HHUS and 10.6% with AUS [52] and, as with all 

modalities, are lower with incidence than prevalence screens.  

Adding screening US to mammography reduces interval cancer rates in women with 

dense breasts. The Japanese Strategic Anti-Cancer Randomized Trial (J-START) 

randomized women aged 40-49 with all breast densities to mammography alone or 

mammography plus HHUS and showed increased node-negative invasive cancer 

detection in women receiving screening US and half the interval cancer rate at 0.5 per 

1000 [53]. In ACRIN 6666, the interval cancer rate was low at 9/111 (8%) of all cancers 

across 7473 screening examinations (1.2 per 1000) [54]. Corsetti et al [55] saw an 

interval cancer rate of 1.1 per 1000 for women with dense breasts when adding 

screening US, comparable to the 1.0 per 1000 rate for women with fatty breasts using 

mammography alone. Screening ultrasound has not been proven to reduce late-stage 

disease. 

A few studies have evaluated US after DBT in women with dense breasts, with 

expected ICDR of 0.9-2.6 invasive cancers per 1000 women screened with HHUS [56-

58]. One series reported similar results with AUS after DBT [59].  

Barriers to implementing screening US include high prevalence of benign cystic lesions 

[60], shortage of trained personnel (HHUS), and large numbers of images (AUS). 

Artificial intelligence may facilitate interpretation of both HHUS and AUS (reviewed in 

[52]). In women who have screening MRI, there is no added benefit from screening US 

[61]. 

Molecular Breast Imaging (MBI) 
 
Molecular breast imaging (MBI) is a nuclear medicine technique (subject to state 

licensing requirements) that uses a dedicated gamma camera to depict preferential 

uptake of Tc-99m sestamibi in mitotically-active breast tissue. Commercial MBI 
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technology includes single-head dedicated NaI cameras (formerly known as breast 

specific gamma imaging [BSGI]) or cadmium zinc telluride detectors in a dual-head 

configuration.  

 

The MBI examination entails intravenous administration of Tc-99m sestamibi, typically 8 

mCi, with imaging commencing immediately after injection. Patient preparation may 

include fasting for 3 hours before injection and peripheral blanket warming to increase 

breast uptake [62]. Bilateral craniocaudal and mediolateral oblique views are acquired 

for 7 to 10 minutes each (i.e. total time for routine four-view exam 28-40 minutes), with 

the patient seated and light compression applied to limit motion [62, 63].  

Because MBI exploits functional behavior rather than x-ray attenuation, it can detect 

cancers masked by dense breast tissue [64]. In a single-center prospective trial of 1585 

women with dense breasts [65], addition of MBI increased sensitivity to 90% (19/21) 

relative to 24% (5/21) with mammography alone (p<0.001), but decreased specificity, 

from 89% for mammography, to 83% for mammography plus MBI (p<0.001), and led to 

additional biopsies in 47/1585 (3.0%) women. ICDR from MBI was 6.9/1000 invasive 

cancers; 8.8/1000 with inclusion of DCIS. Interval cancer rate was 1.3/1000. Shermis et 

al [66] reported similar results on retrospective review of 1696 women undergoing 

supplemental screening MBI in clinical practice: after negative DM, MBI yielded an 

invasive ICDR of 6.5/1000 and overall ICDR 7.7/1000. Across five studies of screening 

MBI performance encompassing 63 breast cancers, 52 (83%) were detected only by 

supplemental MBI, of which 37/52 (71%) were invasive; 26/30 (87%) invasive cancers 

with reported node status were node negative (Figure 5) [64]. Cancers undetected by 

MBI (n=6) included three DCIS, two grade 1 invasive lobular cancers (0.6 cm and 0.7 

cm), and one grade 2 invasive ductal cancer (0.3 cm) [64]. 

The ongoing prospective multicenter Density MATTERS trial compares MBI screening 

in dense breasts to DBT. Inclusion of two annual screening rounds will provide data 

currently lacking on MBI’s impact on rates of interval cancer and advanced breast 

cancer (i.e. ≥ 2 cm or node positive).  D
ow
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MBI is an alternative for women who cannot undergo MRI [63]. Billing averages $450 

and reimbursement about $300; coverage can require preauthorization. Benefit-to-risk 

ratios calculated for MBI screening in dense breasts overlap those for mammography 

[67]; however, concerns regarding radiation risk from MBI persist.  

 

Barriers to use of MBI include the minimum 40-minute exam time and systemic whole-

body radiation exposure. Dosimetry models show an effective dose of approximately 2 

mSv for MBI versus 0.5 for DM or DBT with synthetic reconstructions; 2 mSv is below 

annual background radiation (averaging 3.1 mSv) and therefore considered low risk for 

harmful effects. Work is underway to validate processing algorithms to allow further 

reductions in administered activity or acquisition time for MBI [68] that may reduce 

barriers to adoption. Direct biopsy capability is available from one vendor (GE 

Healthcare, Chicago, IL) and in development for another (CMR Naviscan, Carlsbad, 

CA) [64].  

 

MRI   

Contrast-enhanced MRI is highly sensitive to breast cancer not limited by breast density 

and without ionizing radiation. Reported sensitivity of breast MRI alone is generally 

greater than 80%. Specificity ranges from 83 to over 98% and, on incident rounds, 

typically exceeds 90% [69]. Cancer detection depends on differential 

vascularity/enhancement and therefore requires use of gadolinium-based contrast. Low 

rates of adverse events of 0.17% (95%CI 0.15, 0.19) [70] are observed, including 

cumulative intracranial gadolinium deposition and nephrogenic systemic fibrosis [71]. To 

date, gadolinium deposition has no clear adverse effects, and is reduced with 

macrocyclic chelates [71]. 

Most literature on screening MRI involves high-risk women for whom breast MRI 

markedly reduces interval cancers and late-stage disease. Across 1592 screens in 501 

women, Sardanelli et al [72] reported 16 additional cancers detected by MRI after 

mammography plus US (ICDR of MRI 10/1000), with 3 interval cancers (1.9/1000). 
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Vreemann et al [73] reported on 2773 women undergoing 9571 mammogram and MRI 

examinations. Of 129 screen-detected cancers, 118 were seen on MRI (91.5% 

sensitivity). Forty-one interval cancers were reported: 16 with symptoms (1.7/1000 

exams, the majority in women with pathogenic BRCA1 mutations) and 25 diagnosed at 

prophylactic mastectomy. Warner et al [74] observed a 70% reduction in stage II-IV 

breast cancers in 445 women with pathogenic BRCA mutations undergoing screening 

MRI with one interval cancer in MRI group and 38 in matched comparison group. 

Average size of invasive cancers in MRI cohort was 0.9 cm vs. 1.8 cm for comparison 

group (p<0.001). Based on 1275 high-risk screening MRI examinations diagnosing 114 

cancers [with 10 interval cancers (8.1%)], Heijnsdijk et al [75] predicted mortality 

reduction of 48-61% with MRI alone.  Although MRI has been primarily studied for 

supplemental screening, there is increasing evidence that mammography provides little 

additional benefit in some high-risk populations, particularly women with pathogenic 

BRCA1 mutations under age 40 [75-77]. 

Current American Cancer Society [78] and National Comprehensive Cancer Network 

[79] guidelines recommend screening MRI for women at high risk of breast cancer, to 

begin at age 25 and to include mammography by age 30 in those with known or 

suspected pathogenic BRCA1 or -2 mutations and that MRI be considered in women 

with lobular carcinoma in situ or atypical hyperplasia. Screening MRI should stop by age 

75 [79]. American College of Radiology guidelines also endorse screening MRI in 

women with personal history of breast cancer diagnosed by age 50 or dense breasts 

[80]. 

There is increasing support for MRI screening for women with dense breasts even 

without additional risk factors. The MRI substudy from ACRIN 6666 showed an ICDR of 

14.7/1000 with MRI after mammography plus US (Table 2) [54]. Kuhl et al [81] 

evaluated supplemental MRI in women with <15% lifetime risk for breast cancer; for the 

60% (1282/2120) of women with dense breasts, ICDR was at least 26/1282 (20.3/1000) 

and 11/1282 (8.6/1000) for prevalence and incidence screens respectively. 
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The Dutch DENSE trial invited women aged 50 to 75 years with normal screening 

mammograms and extremely dense breasts to undergo biennial screening with MRI 

and mammography versus mammography alone [82] with a 59% acceptance rate 

(similar to the 58% rate in ACRIN 6666 [83]). The first screening round yielded an ICDR 

from MRI of 79/4783 (16.5/1000), including 64 invasive and 15 DCIS (for an invasive 

ICDR of 13.4/1000); 55/64 (86%) of invasive cancers were node negative [82]. Use of 

MRI reduced interval cancer rate from 4.9/1000 to 0.8/1000. Preliminary results from the 

second MRI screening round demonstrated substantial reduction in both ICDR (5.9 per 

1000 overall, 4.1/1000 invasive) and false positive recalls (21/1000 vs. 80/1000) [84]. 

Barriers to screening MRI include claustrophobia, fear/intolerance of contrast injection, 

inconvenience, and fear of false positives [83, 85]. 

Currently, accredited breast MRI protocols require pre-contrast, at least two post-

contrast, and a T2-weighted series, resulting in typical scan times of 15 to 30 minutes. 

To reduce cost and increase availability, Kuhl et al [86] introduced an “abbreviated MRI” 

(Ab-MRI) using a single pre- and post-contrast T1-weighted sequence with subtraction 

and maximum intensity projections (Figure 6).  

Comstock et al [87], in the Eastern Cooperative Oncology Group (ECOG)-ACRIN 1141 

multicenter trial, compared prevalent screening Ab-MRI (including T2-weighted images) 

with incident DBT. Ab-MRI had superior sensitivity (96% vs. 39%) but reduced 

specificity (87% vs. 97%) among 1444 women with 26 cancers. Ab-MRI alone detected 

all 17 invasive cancers (16/17, 94% node negative) and 5/6 (83%) DCIS (missing one 7-

cm high-grade DCIS seen on DBT); DBT detected 7/17 (41%) invasive cancers and 2/6 

(33%) DCIS yielding an ICDR for Ab-MRI of 14/1444 (9.7/1000) and an invasive ICDR 

of 10/1444 (6.9/1000, p=.002) (Table 2). Additional imaging (recall or short-term follow-

up) was 7.5% (108/1444) for Ab-MRI and 10.1% (146 women) for DBT (p=.02). Biopsy 

rate of Ab-MRI was nearly four-fold DBT (107 vs. 29, representing 7.4% and 2.0% of 

women respectively) with lower PPV3 of biopsies (19% vs. 35.5%, p=.08).  

While MRI clearly depicts additional cancers, concern regarding overdiagnosis remains. 

Importantly, MRI depicts relatively more invasive cancers than DCIS [88]. Although MRI 
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is more sensitive than mammography (89-92% vs. 55-46%) for depicting DCIS [89, 90], 

it appears relatively insensitive for low- and intermediate-grade DCIS [90, 91], 

potentially mitigating its contribution to overdiagnosis.  

A few states and the District of Columbia require insurance coverage for screening MRI 

for women with dense breasts, and/or women at high risk; in New Jersey and 

Pennsylvania, insurance is required to cover screening MRI for extremely dense breasts 

without other risk factors [48]. Insofar as there is no CPT code for Ab-MRI insurance 

billing, facilities typically bill patients directly, charging $250-500 [92]. Non-contrast MRI 

using DWI holds promise [93]. 

 

Contrast-Enhanced Mammography  

Contrast-enhanced digital mammography (CEDM or CEM), also known as contrast-

enhanced spectral mammography, capitalizes on vascular enhancement from injected 

iodinated contrast to depict cancers on mammography. Craniocaudal and mediolateral 

oblique views of each breast are obtained at low energy (24-30 kVp) and high energy 

(typically 40-45 kVp); the latter exploit abrupt increase in x-ray absorption at the k-edge 

of iodine (~33keV). Two images per view result: the low-energy image mimics standard 

2D mammography and a subtracted image shows only areas of enhancement (Figs. 7, 
8). Overall radiation exposure is approximately twice standard mammography but well 

within accepted limits. Most data on CEM performance are from patients with newly 

diagnosed cancer in comparison to MRI. In a meta-analysis of 13 such studies, Xiang et 

al [94] found overall sensitivity of CEM mirrored MRI at 97%, but specificity was higher 

with CEM (0.66; 95%CI 0.59, 0.71) than with MRI (0.52; 95%CI 0.46, 0.58).  

Sorin et al [95] reported results from 611 women undergoing screening CEM, of whom 

568 (93%) had dense breasts and 295 (48.3%) had family or personal history of breast 

cancer. Of 21 malignancies, 11 were seen on mammography and 19 on CEM (ICDR of 

CEDM 8/611; 13.1/1000; 95%CI 6.2, 21.1). Of eight malignancies seen only with CEM, 

seven were invasive and two of four with node staging had metastases. Sung et al [96] 
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reported on 904 women undergoing CEM, 700 of whom had dense breasts (including 

the 307 women reported in [97]), with 15 (1.7%) women experiencing contrast 

reactions: one moderate (dyspnea, requiring diphenhydramine), the remainder mild 

(e.g. nausea or hives). Sixteen cancers were found; 14 (88%) on CEM and two interval 

cancers (2.2/1000), one seen on MRI and one on screening US 10 months later. 

Cancer was detected in 12 women with dense breasts, 6 (50%) on low-energy images, 

and 10 (83%) on CEM. Six of the 12 cancers in dense breasts were seen only on CEM 

(ICDR of 6/700, 8.6/1000); four invasive, with median size 0.8 cm, all node negative. 

Overall specificity for CEM was 93.7% with PPV3 of 15/51 (29.4%). These promising 

results have prompted initiation of a multicenter trial [98] that will compare performance 

of CEM to (DBT plus US) in women with dense breasts at average to intermediate risk.  

There remain several barriers to CEM adoption. Across 84 publications encompassing 

results from 14,012 women undergoing CEM, Zanardo et al [99] reported the pooled 

rate of adverse reactions was 0.82% (95%CI 0.64, 1.05), and staff should be trained in 

contrast reactions. CEM currently lacks widespread direct biopsy capability for findings 

not visible on mammography or US, uncommonly resulting in need for MRI-guided 

biopsy. Most centers utilize the CPT code for 2D mammography for billing CEM; billing 

and reimbursement for the contrast component is variable.  

Consensus Opinions  

1) Increased risk for cancer and masking of noncalcified cancers reduce the potential 

benefit of mammographic screening in women with dense breasts: supplemental 

screening should be discussed, considering patient tolerance and preferences. Table 3 

summarizes performance characteristics and extent of validation across the modalities 

discussed. Figure 9 diagrams current approaches to supplemental screening in the 

context of other risk factors in addition to breast density. 

2) Screening DBT with synthetic reconstructions improves cancer detection, reduces 

recalls, and is achieved with radiation dose comparable to DM; it is therefore the 

preferred mammographic technique for women with heterogeneously dense breasts. 

The sensitivity of mammography in extremely dense breasts, however, as measured by 
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clinically detected false negatives, is as low as 57% and not appreciably improved by 

DBT: supplemental screening should be performed  

3) While there is a relatively small additional cancer yield from US after mammography 

or DBT, interval cancer rates are reduced by screening US. 

4) MBI improves cancer detection in women with dense breasts, and assessment of 

impact on interval cancer rates after DBT is in progress, but this approach currently 

requires a 40-minute exam time and incurs whole body radiation exposure. 

5) The most validated approach producing the greatest improvement in cancer 

detection is contrast-enhanced MRI, even after DBT. Interval cancer rates are 

decreased by MRI, as is late-stage disease (the latter proven only in high-risk women). 

Ab-MRI will reduce cost and improve availability, but claustrophobia and other patient 

tolerance issues must be considered. MRI should stop by age 75 even for high-risk 

women. 

6) Contrast-enhanced mammography appears to have performance characteristics 

similar to MRI, but further validation is necessary as is improved availability of direct 

biopsy capability.  

Summary  

Dense breast notification will soon be the national standard: understanding performance 

of mammography and supplemental screening options is now incumbent on all 

physicians to optimize screening for women with dense breasts. Out-of-pocket costs 

and technology availability influence implementation. In national databases, data 

directly attributing recalls and cancers detected to each modality used in screening 

would facilitate both audits and outcomes analyses. 
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AC
CE
PT
ED

MA
NU
SC
RI
PT

AC
CE
PT
ED

MA
NU
SC
RI
PTFigure 1.  Cancer demonstrated on left mediolateral oblique (MLO) digital mammography in each of the four BI-RADS 

breast density categories.  A) This 61-year-old woman with pathogenic BRCA1 mutation has fatty breasts and a spiculated 
mass (arrow) on screening.  This proved to be a 0.9 cm grade 3 invasive ductal carcinoma (IDC), estrogen-receptor (ER) 
negative, progesterone-receptor (PR) negative, human epidermal growth factor 2 (HER2/neu) negative, Ki-67 proliferation 
index high at 90%, with associated ductal carcinoma in situ (DCIS) and three negative sentinel nodes.  B) Screening mam-
mogram in this 65-year-old woman shows scattered � broglandular density and a spiculated mass (arrow) which proved to 
be a 1.1 cm grade 2 IDC with extensive DCIS, ER/PR positive, HER2/neu negative, Ki-67 high at 30%, with metastatic sentinel 
node and focal extracapsular extension.  C) Baseline screening in a 40-year-old woman shows heterogeneously dense 
parenchyma, which may obscure small masses. Irregular mass with distortion is seen in the central left breast (arrow). Core 
biopsy showed 1.2 cm IDC, ER/PR positive, HER2 negative, Ki-67 moderate at 15%. The patient went elsewhere for treat-
ment.  D) Baseline screening in this 43-year-old woman shows extremely dense parenchyma which lowers the sensitivity of 
mammography. A spiculated mass with associated distortion is seen in the upper posterior left breast (arrow). This proved 
to be a T2 (> 2 cm) grade 2 IDC-DCIS, ER/PR positive, HER2 negative, Ki-67 low at 10% with negative sentinel node biopsy.
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Figure 2.  Cancer seen only on annual screening tomosynthesis in this 46-year-
old woman.  A) 2D craniocaudal (CC) (left) and MLO (right) digital mammograms 
show heterogeneously dense breast tissue. B) Digital breast tomosynthesis (DBT) 
CC view (left) demonstrates a spiculated mass (circle) which is much more subtle 
on the MLO view (right, arrow), enlarged to show detail (C). Core biopsy then ex-
cision showed a 0.7-cm grade 2 IDC, ER/PR positive, HER2/neu negative. Sentinel 
node was negative. 
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Figure 3.  Cancer missed on tomosynthesis in extremely 
dense breast in a 51-year-old woman with right breast 
pain.  A) 2D CC (left) and MLO (right) digital mammograms 
show extremely dense parenchyma with ribbon clip from 
prior benign biopsy and no abnormality at the site of pain 
(triangle marker). Similarly, B) CC (left) and MLO (right) DBT 
views show no abnormality. C) Directed ultrasound evalu-
ation of the area of focal pain revealed a 1.6-cm irregular, 
hypoechoic mass (arrow). US-guided core needle biopsy 
showed grade 3 triple-receptor negative IDC. Excision after 
neoadjuvant chemotherapy showed no residual tumor. 
Sentinel node was negative.
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Figure 4.  Cancer seen only on screening ultrasound in a 58-year-old woman with extremely dense breasts. A) CC (left) and 
MLO (right) synthetic 2D mammograms show normal extremely dense parenchyma, interpreted as negative also on DBT.  
In retrospect, a portion of a dense node is seen in the left axilla (arrow). Technologist-performed handheld screening US 
was performed bilaterally with standard documentation.  B) Radial US image left breast 12:00 6 cm from the nipple shows 
an irregular, hypoechoic 1.9 cm mass (arrow). US-guided core biopsy showed grade 2 IDC, ER positive, PR negative, HER2/
neu ampli� ed by � uorescence in situ hybridization, Ki-67 proliferation index high at 40%. US-guided core biopsy of left 
axillary node con� rmed metastatic disease. The patient had primary chemotherapy with no residual invasive carcinoma 
and few foci of DCIS at lumpectomy. Targeted axillary dissection (with seed-localized excision of known metastatic node) 
showed one metastatic node with treatment e� ect and three normal nodes.
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Figure 5. Cancer seen only on screening molecular breast 
imaging (MBI) in a 47-year-old woman with heteroge-
neously dense breasts. MBI performed after intravenous 
injection of 7.5 mCi Tc-99m sestamibi shows a 9-mm focal 
area of moderate intensity uptake (arrows) in the upper 
inner right breast, middle depth on A) CC views from the 
upper (left) and lower (right) detector heads and B) MLO 
views from the upper (left) and lower (right) detector heads.  
Diagnostic mammogram performed the same day found 
heterogeneously dense breasts and no abnormality to cor-
respond with the uptake on MBI. C) Synthetic 2D CC (left) 
and MLO (right) mammograms from DBT acquisition show 
heterogeneously dense parenchyma and no abnormality. 
Spot compression MLO view was also normal (not shown). 
D) Targeted transverse (left) and longitudinal ultrasound 
(right) shows an oval circumscribed 0.7 cm isoechoic mass 
felt to correspond to the MBI � nding. Ultrasound-guided 
core biopsy and excision revealed 0.4 cm grade 1 IDC, ER/PR 
positive, HER2 negative, Ki-67=8.0%, with low-grade DCIS. 
Sentinel node was negative. (Courtesy of Katie Hunt, Mayo 
Clinic)
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Figure 6. Cancer seen only on screening abbreviated MRI in a 69-year-old woman with dense breasts and history of lobular 
carcinoma in situ excised two years prior. A) CC and B) MLO synthetic 2D views from screening DBT demonstrate hetero-
geneously dense breasts with no abnormalities. C) Baseline screening abbreviated MRI, consisting only of a noncontrast 
3D T1-weighted acquisition and D) a single post-contrast T1-weighted 3D acquisition, from which E) subtracted maximum 
intensity projection image is created, demonstrates an enhancing round mass with indistinct margins and heterogeneous 
internal enhancement in the upper outer right breast (arrows) measuring 0.6 cm. MRI-guided biopsy and excision con-
� rmed a 0.6 cm grade 1 IDC, ER/PR positive, Her2/neu negative, with negative sentinel node biopsy.

D

B

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 W

en
di

e 
B

er
g 

on
 0

9/
09

/2
0 

fr
om

 I
P 

ad
dr

es
s 

26
01

:5
49

:c
18

0:
b5

60
:1

5b
9:

c1
1a

:c
ec

8:
34

a3
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



AC
CE
PT
ED

MA
NU
SC
RI
PT

AC
CE
PT
ED

MA
NU
SC
RI
PT

AC
CE
PT
ED

AC
CE
PT
ED

MA
NU
SC
RI
PT

AC
CE
PT
ED

MA
NU
SC
RI
PT

C

A

Figure 7. Invasive ductal cancer on contrast-enhanced mammogram (CEM) in a 57-year-old woman with dense breasts.  A) 
Screening CC and MLO synthetic 2D mammograms show heterogeneously dense parenchyma and a few calci� cations.  B) 
Close-up of CC tomosynthesis inner right breast (left) and angled spot compression CC tomosynthesis (right) show subtle 
distortion (arrows).  C) Screening handheld US was negative, but targeted radial (left) and antiradial US (right) right breast 
1:00 6 cm from the nipple shows an irregular, hypoechoic 0.9 cm mass (arrows).  Prior to biopsy, the patient had research 
CEM beginning 2.5 minutes after i.v. injection of 125 cc Isovue 370.  D) CC (left) and MLO (right) subtraction CEM shows 
a strongly enhancing 1.2-cm irregular mass (arrows) and mild background parenchymal enhancement.  US-guided core 
biopsy showed grade 2 IDC DCIS, ER/PR positive, HER2/neu negative, Ki-67 low at 10%, with invasive carcinoma measuring 
1.3 cm at lumpectomy and four negative sentinel nodes.
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Figure 8.  Invasive ductal carcinoma in 51-year-old woman across modalities. A) Screening CC (left) and MLO (right) mam-
mograms of the left breast show regional amorphous and pleomorphic calci� cations (arrows) that are well seen despite 
extremely dense parenchyma.  B) Subtraction CC and MLO images from research CEM after i.v. injection of 125 cc Omnipa-
que 300 show strong enhancement of an irregular 2.7-cm mass (arrows) at the site of calci� cations.  C) Targeted US shows a 
partially circumscribed, partially indistinctly marginated slightly hypoechoic 3.1-cm mass (wide arrow) with echogenic calci-
� cations (small arrows).  Stereotactic biopsy was performed (to assure optimal sampling of calci� cations), showing grade 2 
IDC-DCIS, ER/PR/HER2 negative, Ki-67 low at 10%. D) Research CC and MLO molecular breast imaging (10 minute acquisi-
tions following i.v. injection of 7.3 mCi Tc-99m sestamibi) performed after diagnosis shows intense uptake in an irregular 3.4 
cm mass (arrows). Note there is slight reduction in inclusion of extreme posterior tissues relative to mammography. E) Axial 
fat-suppressed T1-weighted MRI shows intense enhancement of irregular 3.0 cm mass at site of known malignancy (arrow). 
The patient had partial response to primary chemotherapy with two sentinel nodes negative for metastases (or therapy-re-
lated changes).
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Figure 9.  Flowchart illustrating 
current approaches to supplemental 
screening in the context of risk factors, 
including breast density. If not per-
formed by age 30, genetic testing can 
be performed at the time of diagnosis 
with breast or ovarian cancer or when 
appropriate family history is identi� ed 
or when a family member is found to 
have a pathogenic mutation. Wom-
en at high risk who are pregnant or 
lactating may consider screening US 
during that time. Similar performance 
has been observed for abbreviated 
MRI and full diagnostic protocol MRI. 
For women who cannot tolerate 
MRI, US is the most widely available 
alternative but produces less gain in 
cancer detection than MRI. MBI or CEM 
appear to produce cancer detection 
similar to MRI but are not yet widely 
available alternatives; further valida-
tion is needed. If a woman has screen-
ing MRI, there is no need for additional 
supplemental screening with US, MBI, 
or CEM. Supplemental screening MRI 
should stop by age 75 even among 
high-risk women. Dx = diagnosis; XRT 
= radiation therapy.
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